El 8 de noviembre de 1895 ocurrió el descubrimiento de los rayos X

Su nombre se debe a que el científico dedujo que la fluorescencia que emanaba involucraba la presencia de radiación de un nuevo tipo, los llamó como actualmente se conocen, ya que eran de naturaleza desconocida

Entérate24.com- Tal día como hoy, 8 de noviembre, pero en 1895, Wilhelm Konrad Röntgen hizo un descubrimiento que lo sorprendió primero a él y luego a todo el mundo. Al igual que el efecto fotoeléctrico, no encajaba con las ideas aceptadas sobre las ondas electromagnéticas y, finalmente, también requirió la introducción de los cuantos para una explicación completa. Las consecuencias del descubrimiento de los rayos X para la física atómica, la medicina y la tecnología fueron enormes.

El 8 de noviembre de 1895, Röntgen estaba experimentando con los nuevos rayos catódicos, al igual que muchos físicos de todo el mundo.

El platino-cianuro de bario, un mineral, es uno de los muchos productos químicos que se sabe que producen fluorescencia (emiten luz visible cuando se ilumina con luz ultravioleta). Pero no había ninguna fuente de luz ultravioleta en el experimento de Röntgen. Se sabía, además, que los rayos catódicos viajan solo unos pocos centímetros en el aire. Por lo tanto, ni la luz ultravioleta ni los propios rayos catódicos podrían haber causado la fluorescencia. Röntgen dedujo que la fluorescencia involucraba la presencia de rayos de un nuevo tipo. Los llamó rayos X, ya que los rayos eran de naturaleza desconocida.

Lea también: El 8 de noviembre de 2013 Unesco reconoció el Proyecto Canaima como “buena práctica educativa”

En una intensa serie de experimentos sistemáticos durante las siguientes 7 semanas Röntgen determinó las propiedades de esta nueva radiación. Informó de sus resultados el 28 de diciembre de 1895 en un artículo cuyo título (traducido) es «Sobre un nuevo tipo de rayos». El artículo de Röntgen describía casi todas las propiedades de los rayos X que se conocen.

Röntgen describió el método para producir los rayos y probó que se originan en la pared de vidrio del tubo, donde los rayos catódicos lo golpean. Demostró que los rayos X viajan en línea recta desde su lugar de origen y que oscurecen una placa fotográfica. Informó detalladamente de la capacidad variable de los rayos X para penetrar en diversas sustancias como el papel, la madera, el aluminio, el platino y el plomo. Su poder de penetración era mayor en los materiales “ligeros” (papel, madera, carne) que en los materiales “densos” (platino, plomo, hueso). Describió y exhibió fotografías que mostraban «las sombras de los huesos de la mano, de un conjunto de pesas dentro de una pequeña caja, y de un pedazo de metal cuya inhomogeneidad se hace evidente con los rayos X.» Dio una descripción clara de las sombras proyectadas por los huesos de la mano sobre la pantalla fluorescente. Röntgen también informó que los rayos X no se desviaban por la presencia de un campo magnético. Tampoco constató reflexión, refracción o interferencia usando aparatos ópticos ordinarios.

Lea: Cada 8 de noviembre se celebra el Día Mundial del Urbanismo

J.J. Thomson descubrió una de las propiedades más importantes de los rayos X uno o dos meses después de que los rayos se diesen a conocer. Encontró que cuando los rayos pasan a través de un gas, lo convierten en un conductor de electricidad. Thomson atribuyó este efecto a «una especie de electrólisis, la molécula se divide o casi se divide por los rayos de Röntgen». Hoy sabemos que los rayos X, al pasar a través del gas, liberan electrones de algunos de los átomos o moléculas del gas. Los átomos o moléculas que pierden estos electrones se cargan positivamente. Siguiendo con el símil electrolítico a estas moléculas cargadas se las llamó iones porque se parecen a los iones positivos de la electrólisis, y de ahí que se diga que el gas está “ionizado”. Además, los electrones liberados pueden unirse a átomos o moléculas previamente neutros, cargándolos negativamente.

Röntgen y Thomson descubrieron, independientemente que los cuerpos electrificados pierden sus cargas cuando el aire a su alrededor se ionizado por los rayos X. (Ahora es fácil ver por qué: el cuerpo electrificado atrae iones de la carga opuesta presentes en el aire ionizado). La velocidad de descarga depende de la intensidad de los rayos (ya que de ella depende la cantidad de ionización). Por lo tanto, esta propiedad se usó, y se sigue usando, como un medio cuantitativo conveniente para medir la intensidad de un haz de rayos X. Este descubrimiento implicaba, pues, que se podían realizar mediciones cuantitativas cuidadosas de las propiedades y efectos de los rayos X.

Síguenos en nuestras redes sociales:
Telegram:@enterate24
Instagram:@enterate.24
Twitter:@enterat24
Youtube:@Enterate24
Facebook:@Enterate24
Pinterest:@Enterate24

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *